Trægrænse

Trægrænsen er dér, hvor skoven afløses af tundra, fordi træerne kræver ca. en måned med en gennemsnitstemperatur over 10 °C for at kunne vokse og sætte frugt en gang imellem.

Trægrænsen danner grænse imellem den boreale klimazone (med nåletræer) og den arktiske/alpine klimazone med kun dværgbuske og urter.

Det er sjældent, at man kan se den virkelige trægrænse på en bjergside, selv om træerne forsvinder i en bestemt højde, da det ofte er jordbunden, der bliver for ringe, og den udtørrende blæst der bliver for slem over en vis højde. Træerne skal havde en vis mængde nedbør for at kunne overleve de græssende dyrs nedbidning. Ellers afløses skoven af steppe eller prærie eller af savanne i den tropiske klimazone. I fortiden, da der fandtes mammutter og andre store dyr, var trægrænsen nok mindre tydelig end i dag, og den arktiske klimazone var mere præget af græs end af dværgbuske should i tenderize steak.

Når trægrænsen af og til er meget utydelig, kan det også skyldes, at forskelle i lokalklimaet kan betyde en fremskydning eller en tilbagetrækning af grænsen. Eksempelvis er havnærhed og sydhæld noget, der begunstiger trævækst, sådan at trægrænsen skydes mod nord, hvor disse faktorer gør sig gældende

New Yorkbulls Away MCCARTY 11 Jerseys

New Yorkbulls Away MCCARTY 11 Jerseys

BUY NOW

$266.58
$31.99

. Konkret har det vist sig, at lokalklimaet på de sydvendte skråninger af fjordene i det sydvestlige Grønland giver mulighed for trævækst, og man har med held etableret skov et par steder.

Le Lardin-Saint-Lazare

Le Lardin-Saint-Lazare (okzitanisch: Lo Lardin e Sent Lazar) ist eine südwestfranzösische Gemeinde (commune) mit 1.811 Einwohnern (Stand: 1. Januar 2014) im Département Dordogne im Nordosten der Region Aquitanien. Le Lardin-Saint-Lazare gehört zum Arrondissement Sarlat-la-Canéda und zum Kanton Haut-Périgord noir.

Le Lardin-Saint-Lazare liegt in der alten Kulturlandschaft des Périgord nahe der Grenze zum Limousin etwa 40 Kilometer ostsüdöstlich von Périgueux und etwa 24 Kilometer westsüdwestlich von Brive-la-Gaillarde. Der Vézère bildet die südliche Gemeindegrenze. Umgeben wird Le Lardin-Saint-Lazare von den Nachbargemeinden Beauregard-de-Terrasson im Norden, Terrasson-la-Villedieu im Osten, Condat-sur-Vézère im Süden, Les Farges im Südwesten, La Bachellerie im Westen sowie Peyrignac im Nordwesten.

Wie das Wappen der Gemeinde zeigt, ist die Papierindustrie in Le Lardin-Saint-Lazare ein bedeutender Wirtschaftsfaktor der Region.

Allas-les-Mines | Archignac | Aubas | Audrix | Auriac-du-Périgord | Beauregard-de-Terrasson | Berbiguières | Besse | Beynac-et-Cazenac | Bézenac | Borrèze | Bouzic | Calviac-en-Périgord | Campagnac-lès-Quercy | Campagne | Carlux | Carsac-Aillac | Carves | Castelnaud-la-Chapelle | Castels&nbsp hydration belts for runners;| Cazoulès | Cénac-et-Saint-Julien | Châtres | Chavagnac | Cladech | Coly | Condat-sur-Vézère | Coux-et-Bigaroque-Mouzens | Daglan | Doissat | Domme | Fanlac | Fleurac | Florimont-Gaumier | Grèzes | Grives | Groléjac | Jayac | Journiac | La Bachellerie | La Cassagne | La Chapelle-Aubareil | La Dornac | La Feuillade | La Roque-Gageac | Larzac&nbsp electric pill shaver;| Lavaur | Le Bugue | Le Lardin-Saint-Lazare | Les Eyzies-de-Tayac-Sireuil | Les Farges | Loubejac | Manaurie | Marcillac-Saint-Quentin | Marnac | Marquay | Mauzens-et-Miremont | Mazeyrolles | Meyrals | Monplaisant | Montignac | Nabirat | Nadaillac | Orliac | Orliaguet | Paulin | Pays-de-Belvès | Pazayac | Peyrignac | Peyrillac-et-Millac | Peyzac-le-Moustier | Plazac | Prats-de-Carlux | Prats-du-Périgord | Proissans | Rouffignac-Saint-Cernin-de-Reilhac | Sagelat | Saint-Amand-de-Coly | Saint-André-d’Allas | Saint-Aubin-de-Nabirat | Saint-Avit-de-Vialard | Saint-Cernin-de-l’Herm | Saint-Chamassy | Saint-Cirq | Saint-Crépin-et-Carlucet | Saint-Cybranet | Saint-Cyprien | Sainte-Foy-de-Belvès | Sainte-Mondane | Sainte-Nathalène | Saint-Félix-de-Reillac-et-Mortemart | Saint-Geniès | Saint-Germain-de-Belvès | Saint-Julien-de-Lampon | Saint-Laurent-la-Vallée | Saint-Léon-sur-Vézère | Saint-Martial-de-Nabirat | Saint-Pardoux-et-Vielvic | Saint-Pompont | Saint-Rabier | Saint-Vincent-de-Cosse | Saint-Vincent-le-Paluel | Salignac-Eyvigues | Salles-de-Belvès | Sarlat-la-Canéda | Savignac-de-Miremont | Sergeac | Simeyrols | Siorac-en-Périgord | Tamniès | Terrasson-Lavilledieu | Thonac | Tursac | Valojoulx | Veyrignac | Veyrines-de-Domme | Vézac | Villac | Villefranche-du-Périgord | Vitrac

Lamborghini Huracán

La Lamborghini Huracán è un’automobile sportiva di lusso prodotta dalla casa italiana Automobili Lamborghini. Erede della Gallardo ha debuttato ufficialmente al Salone di Ginevra 2014. La Huracán combina prestazioni di elevato livello con facilità di guida insieme a una tecnologia innovativa. La Huracán viene prodotta nello stabilimento Lamborghini a Sant’Agata Bolognese. Le consegne ai primi clienti sono iniziate nella primavera del 2014. Nel 2016 ha debuttato la versione spider.

Come la maggior parte dei nomi che rappresentano i modelli Lamborghini, Huracán si ispira al mondo delle corride. Il toro da combattimento Huracán della razza spagnola “Conte de La Patilla”, divenne famoso per il coraggio e per la forte inclinazione all’attacco. Combatté nell’agosto del 1879 ad Alicante, dove restò imbattuto, venendo perciò ricordato fra i migliori tori da corrida. Inoltre, il nome Huracan richiama anche la divinità Maya del fuoco, del vento e della tempesta.

La linea della Lamborghini Huracán unisce frontale, abitacolo e posteriore tramite una sola linea: i finestrini laterali si incontrano, realizzando una forma esagonale incastonata nel profilo della vettura. Alta tecnologia, artigianalità e lusso si fondono fra loro, il design è caratterizzato da bordi affilati, volumi monolitici, scolpiti e superfici tese. Elemento innovativo di design è il sistema di illuminazione di luci a LED che, per la prima volta nel segmento delle sportive di lusso, include questa tecnologia in quasi tutte le luci della vettura.

Gli interni sono dominati da un abitacolo innovativo: lo schermo TFT a colori da 12,3 pollici mostra tutte le informazioni necessarie al guidatore, dal contagiri alle mappe del navigatore GPS fino alle funzioni del sistema di infotainment, che è possibile configurare in modi differenti.

Nella consolle centrale è presente un piccolo display che visualizza la tensione della batteria, la pressione e la temperatura dell’olio motore.

Gli interni personalizzabili sono realizzati in nappa e Alcantara, mentre i sedili sportivi standard comprendono una regolazione elettrica e longitudinale dello schienale.

Il telaio ibrido della Lamborghini Huracán è una struttura integrata in fibra di carbonio ed elementi in alluminio. Con un peso a secco di 1.422 kg, la scocca consente di raggiungere un rapporto peso/potenza di 2,33 chilogrammi per cavallo vapore, e garantisce anche una precisione di guida come una vettura da corsa. Il motore V10 da 5,2 litri di cilindrata, sviluppa una potenza massima di 448 kW/610 CV a 8.250 giri/min e una coppia motrice di 560 Nm a 6.500 giri/min. Nel sistema a “Iniezione Diretta StratificataIDS l’iniezione diretta ed indiretta di carburante sono combinate per garantire più potenza e più coppia, contestualmente a consumi ed emissioni che rispettano gli standard fissati dalla normativa Euro 6. La velocità massima è di oltre 325 km/h, mentre l’accelerazione da 0 a 100 km/h avviene in 3,2 secondi e da 0 a 200 km/h in 9,9 secondi.

La variante cabriolet della Huracán LP 610-4 è stata presentata al Salone di Francoforte il 14 settembre 2015. Il 5,2 litri V10 aspirato è lo stesso della coupé e sviluppa 610 CV. Lo scatto 0 – 100 km/h è coperto in 3,4 secondi e la velocità massima è di 323 chilometri all’ora.

La Huracán LP 580-2 è una versione dal costo inferiore rispetto alla LP 610-4 e si differenzia per avere un motore con una potenza inferiore e per la trazione posteriore a 2 ruote motrici anziché integrale. Ha lo stesso 5.2 litri V10 della 610-4 con potenza però ridotta a 580 CV e con una coppia di 533 Nm football shorts and socks.

Grazie all’assenza della trazione sulle quattro ruote motrici, i tecnici della Lamborghini hanno ottenuto un risparmio di peso di ben 33 kg rispetto alla Huracan LP 610-4, contenendolo in appena 1.389 kg distribuito al 40% sull’avantreno e al 60% sul retrotreno. Lo scatto nello 0-100 km/h è coperto in 3,4 secondi e lo 0-200 km/h avviene in 10,1 secondi. La velocità massima è di 320 km/h. Inoltre è caratterizzata da lievi differenze estetiche, con una diversa presa d’aria anteriore dal disegno più semplice e meno elaborato. La trasmissione a doppia frizione a sette marce è la stessa utilizzata dalla 610-4.

Una variante cabriolet della Huracán LP 580-2 è stata presentata al salone di Los Angeles il 16 novembre 2016. Il 5,2 litri V10 aspirato è lo stesso della coupé e sviluppa 580 CV. L’accelerazione nello 0 a 100 km/h avviene in 3,6 secondi e la velocità massima è di 320 km/h. Il peso complessivo è di 1.509 kg, con un rapporto peso/potenza pari a 2,6 kg/CV.

Una variante più prestazionale della Huracán, chiamata LP 640-4 Performante, è stata vista nel mese di ottobre 2016 con delle camuffature da muletto durante i test di sviluppo mentre effettuava delle sessioni di prova sulla pista del Nürburgring Nordschleife. La vettura in seguito sarebbe stata mostrata nella sua forma definitiva per il successivo avvio alla produzione di serie nel 2017 al Salone di Ginevra.

La Huracán Performante ha ricevuto consistenti modifiche nel disegno del corpo rispetto alle altre versioni della stessa. I maggiori cambiamenti sono visibili nei paraurti anteriori e posteriori. La posizione degli scarichi (ora sono due) è cambiata, sono posti poco al di sopra del diffusore posteriore. L’interno presenta un nuovo design dei sedili e un nuovo tachimetro digitale, simile a quello della Aventador SV.

Il propulsore delle altre Huracan, il 5,2 litri V10, è stato potenziato a 640 CV erogati a 8000 giri/min con 601 Nm di coppia. Il peso è diminuito di 40 kg, grazie al largo uso di alluminio forgiato, di fibra di carbonio (primo utilizzo su di una vettura piccola della casa del toro dopo la Sesto Elemento) per la carrozzeria e all’utilizzo di parti cave per alcuni elementi. La fibra di carbonio è stata impiegata anche per il nuovo spoiler posteriore, splitter anteriore e per il diffusore; questi globalmente costituiscono un sistema di elementi singoli aerodinamici attivi, che grazie alla deportanza da loro generata non solo incrementano il carico aerodinamico della vettura ma ne aiutano anche il movimento e l’agilità in curva. Il veicolo è in grado effettuare lo 0-100 km/h in 2,9 secondi e lo 0-200 km/h in 8,9 secondi, con una velocità massima di 325 km/h.

L’assetto della vettura è stato irrigidito del 10% con nuove molle, roll bar e bracci delle sospensioni. Queste ultime sono a controllo magnetoreologico, con un sistema rielaborato per dare una maggiore sensibilità di guida. La Huracán Performante è dotata di un sistema chiamato ALA (Aerodinamica Lamborghini Attiva) inedito per le vetture bolognesi, che gestisce tutte le componenti aerodinamiche (alettone, minigonne, splitter, prese d’aria, alette aerodinamiche) prediligendo il carico in curva o la penetrazione aerodinamica in rettilineo, attraverso degli attuatori elettronici che sono più leggeri del 80% rispetto ai tradizionali sistemi idraulici delle normali auto sportive. Secondo Lamborghini, questo sistema incrementa del 750% il carico aerodinamico rispetto alle normali Huracán.

Nel mese di ottobre 2016, la Performante ha fatto segnare un tempo sul giro di 6:52.01 sulla pista del Nürburgring, con il collaudatore ufficiale della casa del toro Marco Mapelli al volante, rendendola la vettura di serie più veloce del mondo a girare sull’inferno verde. Inoltre al momento della presentazione, è l’automobile della Lamborghini di serie omologata a circolare su strada con motore a 10 cilindri dalla potenza più elevata mai prodotta.

La Huracán dispone di una trasmissione “Lamborghini Doppia Frizione” (LDF) abbinata alla trazione integrale a controllo elettronico. Sulla Huracán possono essere richiamate differenti modalità di guida tramite un selettore sul volante, con tre impostazioni dei sistemi dinamici disponibili: strada, sport e corsa. Le varie impostazioni influenzano il set-up di diversi sistemi come le reazioni di motore e cambio, il suono del motore, la trazione integrale e il controllo elettronico della stabilità. Sulla Huracán i freni carboceramici fanno parte della dotazione di serie, per assicurare rilevanti prestazioni in frenata. Lo sterzo a sensibilità variabile “Lamborghini Dynamic Steering” e le sospensioni con ammortizzatori a controllo magnetoreologico (MRF) sono disponibili come optional, permettendo così di personalizzare anche le dinamiche di guida della Huracán.

Nel 2015 una Lamborghini Huracán LP 610-4 è stata donata alla Polizia di Stato italiana di Roma: dotata di defibrillatore e di frigo per il trasporto d’organi, plasma e farmaci, supporta il lavoro della stradale nei casi di massima emergenza. È il terzo caso di auto sportive donate da case automobilistiche alle forze dell’ordine italiane, dopo le due Gallardo consegnate alla Polizia e la Lotus Evora S consegnata all’Arma dei Carabinieri. Alla fine di marzo 2017 viene donata una seconda Huracan, questa volta alla Polizia Stradale di Bologna per svolgere compiti di pattugliamento e anch’essa di trasporto speciali quali quelli di emergenza medica. Inoltre é presente, nella volante, un sistema che, grazie a una telecamera collegata ad un tablet, monitora eventuali infrazioni del codice della strada, la classica paletta, il porta arma e la radio. Gli pneumatici sono stati specificatamente pensati per questa pantera dalla Pirelli e presentano una grafica sul fianco con i colori propri della Polizia cycling water bottles.

La Avio è la prima edizione limitata della Lamborghini Huracán, basata sulla versione LP 610-4 di cui mantiene anche tutte le caratteristiche meccaniche e tecniche. Le differenze rispetto alle versioni di serie sono: nuovi colori, nuovi rivestimenti, nuovi adesivi esterni e interni e loghi ispirati all’Aeronautica Militare. Sulla console centrale c’è una targhetta che identifica il numero dell’esemplare. La tiratura è limitata a sole 250 vetture.

La vernice della carrozzeria è disponibile in cinque colori: “Grigio Falco” che è il colore di serie, e le altre optional sono “Blu Grifo”, “Grigio Nibbio”, “Grigio Vulcano” e “Verde Turbine”. La nomenclatura delle vernici è stata ripresa dai corsi dell’Accademia dell’Aeronautica Militare Italiana. Su tutte le livree è presente una doppia striscia verticale bianca o grigia che attraversa per lungo tutta la vettura; sono presenti inoltre altri elementi a contrasto in nero, come gli specchietti esterni e i cerchi in lega e in bianco e grigio nelle minigonne laterali e nello spoiler anteriore. Inoltre, esiste un programma personalizzato che permette di avere una vernice esclusiva.

Nella parte esterna delle portiere e sotto gli specchietti retrovisori è presente un adesivo con la sigla “L63” separata da una coccarda tricolore, che richiama i caccia dell’Aeronautica Militare Italiana. Nell’abitacolo, la Huracàn Avio ha delle rifiniture in pelle nera e Alcantara, con un motivo esagonale creato con un processo che prevede un’incisione al laser, utilizzato per la parte centrale dei sedili, il bracciolo, il supporto per le ginocchia e per una parte delle portiere, coadiuvato da cuciture in bianco a contrasto.

Nel 2014 è stata realizzata la Lamborghini Huracán LP 620-2 Super Trofeo, versione da competizione della Huracan destinata a competere nel campionato Blancpain Super Trofeo assieme alla precedente Gallardo Super Trofeo. Presentata presso il concorso di bellezza di Pebble Beach, la vettura presenta numerose componenti aerodinamiche aggiuntive realizzate in fibra di carbonio e la dotazione di sicurezza è stata costruita conformandosi ai regolamenti stabiliti dalla FIA. Il motore è il V10 aspirato della versione stradale, ma è un’evoluzione di quello di serie, sprigiona 620 CV a 6500 giri e una coppia massima di 570 Nm. Il peso si attesta sui 1.270 kg, con un rapporto peso potenza di 2,05 kg/CV e la trazione è posteriore con un bilanciamento dei pesi sui 2 assi di 42/58. Gli pneumatici impiegati sono Pirelli P Zero da competizione con misure 305/660-18 all’anteriore e 315/680-18 al posteriore.

La Lamborghini Huracán GT3, sviluppato in collaborazione con Dallara, è dotata di un motore a benzina V10 da 5.2 litri con un peso di 1230 kg. È stata introdotta nel 2015. Il Team Lazarus ha vinto nel 2016 International GT Open con i piloti Thomas Biagi e Fabrizio Crestani. Inoltre, il team Barwell Motorsport ha ottenuto quattro vittorie nel British GT Championship 2016, il Grasser Racing Team ha vinto una gara al ADAC GT Masters 2016 e la scuderia Paul Miller Racing ha ottenuto una vittoria al WeatherTech Championship 2016 SportsCar.

Altri progetti

Juan Hernández Sierra

Juan Hernández Sierra (* 16. März 1969 in Guane, Pinar del Río) ist ein ehemaliger kubanischer Boxer, der viermal Amateurweltmeister im Weltergewicht war.

Seinen ersten bedeutenden internationalen Titel gewann Hernández 1987 in Havanna, als er Juniorenweltmeister im Leichtgewicht wurde. Er besiegte dort im Finale Kostya Tszyu aus der Sowjetunion.

1988 und 1989 verlor er beim Chemiepokal gegen Siegfried Mehnert. Seine vier Sieg bei Weltmeisterschaften gelangen ihm 1991 in Sydney (Finalsieg über Andreas Otto), 1993 in Tampere (9:3 Punkt-Finalsieg über den Litauer Vitalijus Karpačiauskas, im Halbfinale schaltete er den Ahlener Andreas Otto mit 11:4 aus.), 1995 in Berlin (Finalsieg über Oleg Saitow) und 1999 in Houston. Bei der WM 1997 in Budapest unterlag er dem Russen Saitow im Halbfinale.

Bei den Weltmeisterschaften 1999 wertete das Kampfgericht das Finale gegen Timur Gaidalow, Russland sport bottle water, zunächst für diesen, machte das Urteil jedoch nach Protest Kubas und Abreise der gesamten kubanischen Delegation rückgängig und wertete den Kampf für Hernández.

Etwas weniger erfolgreich waren seine Auftritte an Olympischen Spielen, es gelang ihm bei drei Teilnahmen keine Goldmedaille. 1992 in Barcelona scheiterte er im Finale am Iren Michael Carruth und musste sich mit Silber zufriedengeben. 1996 in Atlanta errang er nach einer Finalniederlage gegen Saitow erneut Silber und 2000 in Sydney scheiterte er bereits im Viertelfinale am späteren Sieger Jermachan Ibraimow aus Kasachstan.

Hernández war von 1990 bis 1997 sowie 2000 kubanischer Meister im Weltergewicht. Weitere Erfolge waren unter anderem je zwei Siege bei den Zentralamerika- und Karibikspielen (1990 und 1993), den Panamerikanischen Spielen (1991 und 1999) und bei Weltcup-Turnieren (1990 und 1998).

1974: Emilio Correa | 1978: Waleri Rachkow | 1982: Mark Breland | 1986: Kenneth Gould | 1989: Francisc Vaștag | 1991: Juan Hernández | 1993: Juan Hernández&nbsp

Seattle Sounders FC Home Jerseys

Seattle Sounders FC Home Jerseys

BUY NOW

$266.58
$31.99

;| 1995: Juan Hernández&nbsp buy metal water bottle;| 1997: Oleg Saitow | 1999: Juan Hernández | 2001: Lorenzo Aragón&nbsp thermos stainless steel;| 2003: Lorenzo Aragón | 2005: Erislandy Lara | 2007: Demetrius Andrade | 2009: Jack Culcay-Keth | 2011: Taras Schelestjuk | 2013: Danijar Jeleussinow | 2015: Mohammed Rabii

Maia Agerup

Maia Agerup (born June 22, 1995) is a Norwegian Olympic Sailor. She represents the Royal Norwegian Yacht Club in Oslo.

Together with her twin sister Ragna Agerup she sails the Olympic Class boat 49erFX and will be competing in the 2016 Rio Olympics.

In June 2016 the team was ranked 15th on the ISAF World Ranking. Their best ranking position is 4th, from December 2012.

She has previously sailed Optimist Dinghy and 29er.

2010 – Silver. Norwegian Championship, Optimist

2010 – Gold. Norwegian Championship Teams Racing. (KNS – Ragna Agerup, Line Flem Høst runners pack, Sophie Tjøm)

2013 – Gold. Norwegian Championship glass drinking bottles, 29er

2013 – 12th place and winner of the Female Class. 29er World Championship. Aarhus, Denmark

2013 – 4th place Rose Tennis Bracelet. 29er EuroCup Overall (Best Female Team)

2014 – Gold. ISAF World Cup, 49erFX. Melbourne, Australia

2015 – 9th place. European Championship, 49erFX. Porto, Portugal

2015 – Bronze. U23 World Championship, 49erFX. Flensburg, Germany

2016 – 4th place. ISAF World Cup, 49erFX. Miami, USA

2016 – 5th place. ISAF World Cup, 49erFX small thermos flask. Weymouth, United Kingdom

Château de Semur-en-Brionnais

Château de Semur-en-Brionnais

Le château de Semur-en-Brionnais est situé à Semur-en-Brionnais en Saône-et-Loire, au point le plus étroit d’un éperon rocheux. Ce château fait l’objet d’une inscription au titre des monuments historiques depuis le . Le château fort de Semur-en-Brionnais est l’un des plus anciens de Bourgogne. C’est aussi le lieu de naissance de saint Hugues.

De l’ensemble fortifié qui occupait la totalité de l’éperon rocheux, il ne subsiste que les restes d’une poterne et, sur une terrasse, une haute tour de plan rectangulaire. La poterne, totalement modifiée par les travaux entrepris en 1760, consistait en une porte située à l’étage, défendue par une herse et par un mâchicoulis sur arcade New Balance Sneakers, de même type que ceux de Chamilly et de Sercy. Celui-ci était lancé entre deux tours rondes, à bases légèrement talutées, percées de très rares archères à embrasures plongeantes. La porte a été bouchée et des escaliers ont été construits à son emplacement pour donner accès au premier étage des tours. La tour nord comporte une citerne, la tour ouest, un escalier aménagé dans l’épaisseur du mur. La tour rectangulaire, haute de 22 mètres et dont les murs ont à la base deux mètres d’épaisseur, présente les trous des poutres de quatre niveaux de plancher.

Si les premiers niveaux de fondations du donjon semblent dater de la fin du Xe siècle, la majeure partie de la construction est le résultat de remaniements successifs du XIe siècle au XVe siècle. Les niveaux inférieurs sont bâtis en moyen appareil dans lequel apparaissent des assises en arête de poisson, les troisième et quatrième niveaux en petit appareil. On discerne best meat tenderizer tool, dans les murailles, des ouvertures en plein cintre qui ont été obturées, une petite porte, au premier étage dont l’encadrement rectangulaire paraît indiquer qu’une passerelle la fermait, enfin, au sud et à l’ouest, deux fenêtres à meneau et croisillon dont les embrasures sont munies de coussièges et qui sont sans doute contemporaines d’une vaste cheminée dont seuls subsistent les piédroits.

Les substructures d’une petite tour dominent la vallée.

Le château se visite.

Seigneurs engagistes

Époque plus récente

Hebenhof

Lage von Hebenhof in Bayern

Hebenhof ist ein Ortsteil der Gemeinde Gleiritsch.

Hebenhof liegt in der Region Oberpfalz-Nord im nordöstlichen Teil des Landkreises Schwandorf. Der Hebenhof ist ein Einzelgehöft und wird heute als eigenständiger Bauernhof betrieben. Der Einödhof ist durch eine Gemeindeverbindungsstraße von Bernhof aus zu erreichen. An ihr liegt auch die Kläranlage der Gemeinde Gleiritsch. Der Bach Gleiritsch fließt in einhundert Metern Entfernung an dem Gehöft vorbei und mündet bei Trausnitz in die Pfreimd.

Der Hebenhof gehörte teilweise zum Besitz der Plassenberger, war aber auch zeitweise von der Hofmark Gleiritsch abgetrennt, und war „mit all seiner ein: undt zue gehör, ein hiervon Separirtes Absonderliches Allodial guett gewesen“. Unter den Auswirkungen verschiedener politischer Ereignisse (Dreißigjähriger Krieg 1618–1648) und religiöser Umbrüche, eingeleitet durch die Reformation, standen das Gut Gleiritsch und der Hebenhof vor dem Ruin. Hans Melchior von Plassenberg, der im Besitz des Hebenhofes war, „starb anno 1652 als der Letzte seines Namens, Geschlechts, Schilds und Heims ohne Leibes Erben“. 1688 erwarb Johann Friedrich Freiherr von Kreith den Hebenhof zusammen mit der Hofmark Gleiritsch auf der Gant.

Eine Bestätigung des Johann Andreas Wilhelm von Satzenhofen vom 14. Mai 1696 zeigt die Sonderstellung des Hebenhofes youth sports jerseys. Die Urkunde hat folgenden Wortlaut (ab Zeile7):

„ … , umb eine schriftliche Urkundt ersucht worden goalkeeper gloves in india, / was mit dem so gegenanten mir Umb 300 fl: Capital, undt hievon / lange Jahre ausständig verblibene …, verpfändt gewesenen / Hebenhoff, für eine aigendliche bewandtnis habe. Undt mir nun / gar wohl wisslich, daß diser hoff kein pertinenz stukh zue der / hoffmarckh Gleyritsch, sondern mit all seiner ein: undt zue gehör, ein / hiervon Separirtes Absonderliches Allodial guett gewesen, auch / solcher massen, erstlichen von den herrn von Satzenhoven, alß meines / geschlechts verwandt, durch heurath an die herrn von Plassenberg komen, hernachaber, von herrn Jobst Sigmund von Satzenhoven / selbiges widerumb zuruckh erkauft, dann folgendes von disem den / herrn Hanß Melchior von Plassenberg titulo emptionis gleich /falls yberlassen, auch navhgehendts von ersternanten herrn von Plassenberg Cum omni annexo jure dem herrn Christoph Philipp von Satzenhoven umb eine darauf gelihene Suma geldts / frey ver hypothecirt, welches Creditum, sampt seinem Unter- / pfandt, von jenem meinem lieben herrn Vattern Johann Tobias / von Satzenhoven uf … Mießbach (heute Ödmiesbach, Gemeinde Teunz) und Gutenfürst der Churfürstliche / dhl in Bayrn, Pfleger und Forstmeister zu Obern Murach … durch ordentlichn transport übergeben, entlichen die / darauf gestandene, und auf absterben gedacht meines herrn / Vatters, auf mich … jure gefallene Schuldpraetension / bey letzter, deß gueth Gleyritsch auf der Gandt beschehener Verkauff / ung, von hochgeachten herrn Graf von Kreith richtig bezahlt, mithin / so weit erwente hypothec … frey gemacht, undt auf gelöset / worden sey …

Mießbach, den 14. Mai 1696

Johann Wilhelm Andreas von Satzenhoven“ .

Nr. 53, Hebenhof, beim Hebenbauer, Georg Zanner der ½ Hebenhof – Wohnhaus waterproof cover, Schupfe, Keller, Stadl, Stall, Schupferl, Backofen und Hofraum. Baum- und Grasgarten am Backofen und am Stall.

127 Tagwerk 91 Dezimal

Gekauft von Johann Müller am 24. Mai 1800. Laut Brief vom 2. September 1840 von Adam Müller um 3800 Gulden erkauft.

Bernhof | Boxmühle | Gleiritsch&nbsp define meat tenderizer;| Hebenhof | Heilinghäusl | Kohlmühle | Kroau | Lampenricht | Sägmühle | Steinach | Stöcklhof | Zieglhäuser

Strażnica KOP „Swierynowo”

Strażnica KOP „Swierynowo” – zasadnicza jednostka organizacyjna Korpusu Ochrony Pogranicza pełniąca służbę ochronną na granicy polsko-sowieckiej.

W 1924 roku, w składzie 2 Brygady Ochrony Pogranicza, został sformowany 8 batalion graniczny. W 1928 roku w skład batalionu wchodziło 13 strażnic. 68 strażnica KOP „Swierynowo” w latach 1928 – 1939 znajdowała się w strukturze 3 kompanii KOP „Kołosowo” batalionu KOP „Stołpce”. Strażnica liczyła około 18 żołnierzy i rozmieszczona była przy linii granicznej z zadaniem bezpośredniej ochrony granicy państwowej.

W 1932 roku obsada strażnicy zakwaterowana była w budynku prywatnym. Strażnicę z macierzystą kompanią łączyła droga polna długości 9 km.

Podstawową jednostką taktyczną Korpusu Ochrony Pogranicza przeznaczoną do pełnienia służby ochronnej był batalion graniczny. Odcinek batalionu dzielił się na pododcinki kompanii, a te z kolei na pododcinki strażnic, które były „zasadniczymi jednostkami pełniącymi służbę ochronną”, w sile półplutonu. Służba ochronna pełniona była systemem zmiennym, polegającym na stałym patrolowaniu strefy nadgranicznej, wystawianiu posterunków alarmowych, obserwacyjnych i kontrolnych stałych, patrolowaniu i organizowaniu zasadzek w miejscach rozpoznanych jako niebezpieczne, kontrolowaniu dokumentów i zatrzymywaniu osób podejrzanych, a także utrzymywaniu ścisłej łączności między oddziałami i władzami administracyjnymi. Strażnice KOP stanowiły pierwszy rzut ugrupowania kordonowego Korpusu Ochrony Pogranicza.

Strażnica KOP „Swierynowo” w 1932 roku ochraniała pododcinek granicy państwowej szerokości 5 kilometrów 139 metrów od słupa granicznego nr 788 do 799, a w 1938 roku pododcinek szerokości 7 kilometrów 39 metrów od słupa granicznego nr 787 do 804.

Sąsiednie strażnice:

1 BOP • 2 BOP • 3 BOP • 4 BOP • 5 BOP • 6 BOP • 3 PBOP • 6 PBOP • Grodno • Nowogródek • Podole • Polesie • Wilno • Wołyń

1 • 2 • 3 • 1 Karpaty • 2 Karpaty • Czortków (Podole) • Głębokie • Sarny • Snów (Baranowicze) • Wilejka • Wilno • Wołożyn • Zdołbunów (Równe)

(2) Bereźne • (14) Borszczów • (1) Budsław • (17) Dawidgródek • (4) Dederkały • Nadwórna/Dolina/Delatyn • Dukla • (3) Hoszcza • (6) Iwieniec • (9) Kleck • Komańcza • (13) Kopyczyńce • (10) Krasne • (15) Ludwikowo • (5) Łużki • (21) Niemenczyn • ( 20) Nowe Święciany • (23) Orany • (11) Ostróg • (7) Podświle • (18) Rokitno • (24) Sejny • (16) Sienkiewicze • (12) Skałat • (19) Słobódka • Słobódka II • Skole • (8) Stołpce • (22) Troki • Worochta

Berezwecz • (25) Czortków • (27) Snów • (29) Suwałki • Wilejka • (28) Wołożyn • (26) Żytyń

Hel • Małyńsk • Osowiec • Sarny

1 pkaw (ćwicz. pkaw KOP, Zgr. Kaw. KOP „Feliks”) • dkaw Niewirków • Insp. Płn football compression socks. Gr. • Insp. Śr. Gr. • Insp. Płd Gr.

(1) Budsław • (2) Iwieniec • (3) Dederkały • (4) Niewirków • (5) Żurno • (6) Łużki • (7) Podświle • (8) Krasne • (9) Stołpce • (10) (Radziwiłłmonty / Kleck • (11) Buczacz/Mizocz • (12) Koszlaki/Hnilice Wielkie • (13) Wasylkowce / Czortków • (14) Zaleszczyki • (15) Nowosiółki / Hancewicze • (16) Lenin/Bystrzyce • (17) Rokitno • (18) Ochabie/Druja • (19) Olkieniki • (20) Januliszki/Nowe Święciany •

dal KOP „Czortków” • dal KOP „Osowiec” • ba KOP „Kleck”

1 (Suwałki) • 2 (Wilno) • 3 (Głębokie) • 4 (Wilejka) • 5 (Stołpce) • 6 (Łachwa) • 7 (Rokitno) • 8 (Równe) • 9 (Czortków) • 10 (Tarnopol) • 11 (Wołożyn/Stryj) • 12 (Słobódka) • 12 (Jasło) •

1 (Wilno) • 5 (Lwów)

GO gen. Kruszewskiego • 33 DP • 36 DP • 38 DP • 207 pp • baon KOP „Snów I” • Zgrupowanie KOP • b.sztab. Grupy KOP •

Bakszty • Białowiż • Białozórka • Bielczaki • Borowe • Boryszkowce • Bryckie • Bykowce • Chominka • Chutory Merlińskie • Czyste • Dokszyce • Dołhinów • Druja • Druskienniki • Dubrowa • Dukszty • Dundery • Dziwniki • Filipów • Głębokie • Grabów • Hawrylczyce • Hłuboczek • Hnieździłów • Hołny • Hołyczówka • Husiatyń • Kalety • Kałaharówka • Kołki • Kołosowo • Kołtyniany • Gawryłowce • Gudulin • Kociubińczyki • Korzec • Kozaczyzna • Kudryńce • Kurhany • Obabie • Korolówka • Ignalino • Krzyżówka • Landwarów • Lenin • Leonpol • Lewacze • Lubieniec • Łanowce • Malinów • Małaszki • Marcinkańce • Mejszagoła • Mielnica • Mieżany • Mikołajewszczyzna • Nowomalin • Olhomel • Olkieniki • Olkowicze • Orany • Orniany • Osowik • Ostki • Pieszczanka • Pieszczaniki • Plekiszki • Podwołoczyska • Polewacze • Porzecze • Postołówka • Prozoroki • Przewłoka • Puńsk • Rachowicze • Raków • Rubieżewicze • Rudziszki • Rykonty • Sapożyn • Siejłowicze • Skała • Smolicze • Stasiewszczyzna • Suraż • Szrubiszki • Toki • Turylcze • Wiżajny • Wojtkiewicze • Woronino • Wójtowo • Wysiłek • Żebrowszczyzna •

Adelin • Anopol • Antoledzie • Antołksna • Antonopol • Antonowo • Astrachanka• Babin• Badówka• Bakałarzewo• Bakszty Małe• Bakszty Wielkie • Bałuje • Baranowo • Baranówka • Bardzie • Basmany • Baturyn • Bednarówka • Bedrykowce • Belina • Berce • Berezówka • Bereżanka • Białowiż • Białozórka • Białozyryszki • Bielowce • Blok Mohylany • Bogdanówka • Bołotkowce • Bołożówka • Borek • Borki • Borkowszczyzna • Borowa • Borszczówka • Bortele • Bortkuszki • Borysówka • Boryszkowce • Bór • Brzezina • Brzezina I • Brzoza • Budki Snowidowickie • Budki Wojtkiewickie • Budwieć • Budy • Budźki • Buraki • Burniszki • Buzuny • Cegielnia • Cegielnia I • Chodaki • Chrapuń • Chutor Chwalisów • Chutor Jaśkowickie • Chutor Kryłowskie • Chutor Krzyżowa Chutor Monastyrskie • Chutor Morockie • Chutor Rachowicze • Chutor Stefana • Chutor Tejca • Chutor Zachara • Ciecierowiec • Cielesze • Cotta • Cukrownia Cyckowicze • Czarne • Czarne Kowale • Czerepy • Czernica • Czerwiaki • Czuryłowo • Dermanka• Dmitrówka• Dobre• Dobry Ostrówek• Dorofijówka• Drawcze• Druja• Druskieniki• Druskieniki Most• Dubinowo• Dubno• Dubok• Dulkiszki• Dumaryszki• Dusznica• Dusznica• Dworczany• Dwornopol• Dwór• Dziewicz• Dzisna• Filipów• F.Truss• F.Zachacie• Frankopol• Fryderland• Gajlutyszki • Gawejki • Giryńce • Grabiały • Grabów • Grazie • Gromadziszki • Gródek • Grudzinowo • Grybieliszki • Grzybiańce • Grzybina • Grzybowa • Helenowo • H. Majera • H. Wolmera • Hornowo B. • Hornowo W. • Horodek • Horoszowa • Hryhorowicze • Hurnowicze • Husiatyn • Igorka • Iłowo • Jałówka • Jamcowa Niwa • Jampol • Jankuniszki • Jastrzębów • Jaśkowicze • Jateluny • Jelinki • Jelno • Jezioro • Joachimowo • Jodczyce • Jowicze • Józefowo • Juszewicze • Juśkowce • Kałaharówka • Kamienny Wóz • Karmazyny • Karolin • Kiernówek • Kimborciszki • Klimonty • Kobyla • Kodź • Kokoszyńce • Kołki • Kołodróbka • Kołosowo • Komajsk • Konfederacja Barska • Konowica • Kopciowo • Korecka Huta • Korno • Korzeniowszczyzna • Kotysz • Kozaczki • Kozina • Krale • Krągłe • Krejwiany • Kręciłów • Kruźnica • Kryłów • Krzemień • Krzywosiele • Kuczkuny • Kudruny • Kudryńce • Kul • Kumielin • Kuncowszczyzna • Kupiel • Kupowo • Kuraniszki • Kuraż • Kurynie • Lachów • Las Połośniański • Lecieszyn • Lejpuny • Lenin Most • Leonpol • Lesuny • Leśniczówka • Lichacze • Lidawka • Lipowo • Lipówka • Łapiny • Łowcewicze • Łozowicze • Łozy • Łoździany • Łuczyna • Ługowate • Łuka Mała • Łukawiec • Łutki Dwór • Łutki Wieś • Łyngmiany • Majków • Maleszewo • Małdziuny • Małe Dubno • Marcinkańce • Marcinkowicze • Marjanowo • Marjanowo I • Marjanówka • Markowszczyzna • Marysin • Mejrany • Michalino • Michałówka • Miciuny • Mielnica • Mieżany • Milcza • Milewicze • Miluniszki • Mińska • Mołotków • Mordasowo • Morgi • Morocz • Morozowicze • Morozówka • Most Kolejowy • Moszczanica • Musznia • Mysino • Mysłowa • Nikoje • Niwra • Nowa Huta • Nowiki • Nowosiółka • Nowy Rożan • Okmiana • Okopy św cool drink bottles. Trójcy • Olany • Olchowczyk • Oleszczenica • Oleszkowo • Olkieniki • Olszany • Orzechowiec • Osetyszcze • Osinówka • Ostróg • Ostrówek • Oszaryno • Ośniki • Palczyńce • Panie Kochanku • Paniowce • Parczyńszczyzna • Parfimy • Pasieki • Paszuki • Pawłowszczyzna • Pieczarna • Pieszczaniki • Pieszczanka • Plauszkiety • Podbłędzie • Podgaj • Podumble • Podwołoczyska • Podworańce • Pohost • Pohulanka • Polanka • Polikszty • Polulkiemie • Poluńce • Połośnia • Połowkowicze • Pomiary • Pomorszczyzna • Poniewieżka • Porzecze • Postawiszki • Postołówka • Poszakinia • Powianuszka • Powiazyń • Prawy Las • Prosowce • Prudnik • Prypeć • Przełaje • Przerośl • Przewałka • Puchacze • Puhajnia • Puklaki • Pustyłki • Puzichów • Rachowicze • Radoszkowice • Radoszówka • Rakówek • Raszkówka • Riasło • Riasto • Romaszkańce • Rożyska • Rubieżewicze • Rubryń • Rudnia • Rybna • Rytkuniszki • Sadki • Samanta • Samochwały • Serebranka • Siekierzyńce • Siekierzyńce Płd fabric shaver reviews. • Siekierzyńce Płn. • Siergiejczyki • Sinków • Siwki • Skała • Skobsk • Skoroda • Słoboda • Smolarnia • Smolarnia I • Smolniki • Smołwy • Soboliszki • Soczewki • Sołonoje • Sołtanowszczyzna • Somity • Stajki • Stanowisko • Staromiejszczyzna • Stelmachowo M. • Stelmachowo W. • Storożów • Stójło • Karczemno • Mikulicze • Studzianka • Sudawskie • Suła • Surmańce • Swierynowo • Szabany • Szapowały • Szczęsnówka • Szkrobotówka • Szydłowce • Szymoniszki • Świlemieście • Taranowa Góra • Tarnoruda • Tataryszki • Toki • Tołmaczewo • Trościanica • Trójca • Trybuchowce • Turmont • Uciecha • Ujście • Unkszta • Ustrzeż • Uście • Uzmiany • Wardomicze • Wejksztelańce • Wiazyń • Wiciuny • Wiejno • Wielbowno • Wielka Bałwań • Wielki Las • Wierciochy • Wiereciejka • Wierszeradówka • Wierzbówka • Wiktorówka • Wilcza • Wilia • Wilk • Wiłówka • Wingrany • Wiłuniszk • Wołkowce • Wołma • Wołma I • Worony • Wygoda • Wysoczyczyn • Zaciemień • Zagajno • Zagorje • Zahacie • Zakletne • Zakoty • Zalesie I • Zalesie • Zaleszczyki • Zalutycze • Załucze • Zaprosie • Zawale • Zawiasy • Zbrzyż • Zielona I • Zielona • Zota • Żelechowo • Żurawy

Fluoroscopy

Fluoroscopy (/flʊərˈɒskəpi, flɔːr-/) is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope (/ˈflʊərəˌskoʊp, ˈflɔːr-/) allows a physician to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched. This is useful for both diagnosis and therapy and occurs in general radiology, interventional radiology, and image-guided surgery. In its simplest form, a fluoroscope consists of an X-ray source and a fluorescent screen, between which a patient is placed. However, since the 1950s most fluoroscopes have included X-ray image intensifiers and cameras as well, to improve the image’s visibility and make it available on a remote display screen. For many decades fluoroscopy tended to produce live pictures that were not recorded, but since the 1960s, as technology improved, recording and playback became the norm.

Fluoroscopy is similar to radiography and X-ray computed tomography (X-ray CT) in that it generates images using X-rays. The original difference was that radiography fixed still images on film whereas fluoroscopy provided live moving pictures that were not stored. However, today radiography, CT, and fluoroscopy are all digital imaging modes with image analysis software and data storage and retrieval.

The use of X-rays, a form of ionizing radiation, requires the potential risks from a procedure to be carefully balanced with the benefits of the procedure to the patient. Because the patient must be exposed to a continuous source of X-rays instead of a momentary pulse, a fluoroscopy procedure generally subjects a patient to a higher absorbed dose of radiation than an ordinary (still) radiograph. Only important applications such as health care, bodily safety, food safety, nondestructive testing, and scientific research meet the risk-benefit threshold for use. In the first half of the 20th century shoe-fitting fluoroscopes were used in shoe stores, but their use was discontinued because it is no longer considered acceptable to use radiation exposure, however small the dose, for nonessential purposes. Much research has been directed toward reducing radiation exposure, and recent advances in fluoroscopy technology such as digital image processing and flat panel detectors, have resulted in much lower radiation doses than former procedures.

Fluoroscopy is also used in airport security scanners to check for hidden weapons or bombs. These machines use lower doses of radiation than medical fluoroscopy. The reason for higher doses in medical applications is that they are more demanding about tissue contrast, and for the same reason they sometimes require contrast media.

Visible light can be seen by the naked eye (and thus forms images that people can look at), but it does not penetrate most objects (only translucent ones). In contrast, X-rays can penetrate a wider variety of objects (such as the human body), but they are invisible to the naked eye. To take advantage of the penetration for image-forming purposes, one must somehow convert the X-rays’ intensity variations (which correspond to material contrast and thus image contrast) into a form that is visible. Classic film-based radiography achieves this by the variable chemical changes that the X-rays induce in the film, and classic fluoroscopy achieves it by fluorescence, in which certain materials convert X-ray energy (or other parts of the spectrum) into visible light. This use of fluorescent materials to make a viewing scope is how fluoroscopy got its name.

As the X-rays pass through the patient, they are attenuated by varying amounts as they pass through or reflect off the different tissues of the body, casting an X-ray shadow of the radiopaque tissues (such as bone tissue) on the fluorescent screen. Images on the screen are produced as the unattenuated or mildly attenuated X-rays from radiolucent tissues interact with atoms in the screen through the photoelectric effect, giving their energy to the electrons. While much of the energy given to the electrons is dissipated as heat, a fraction of it is given off as visible light.

Early radiologists would adapt their eyes to view the dim fluoroscopic images by sitting in darkened rooms, or by wearing red adaptation goggles. After the development of X-ray image intensifiers, the images were bright enough to see without goggles under normal ambient light.

Nowadays, in all forms of digital X-ray imaging (radiography, fluoroscopy, and CT) the conversion of X-ray energy into visible light can be achieved by the same types of electronic sensors, such as flat panel detectors, which convert the X-ray energy into electrical signals, small bursts of current that convey information that a computer can analyze, store, and output as images. As fluorescence is a special case of luminescence, digital X-ray imaging is conceptually similar to digital gamma ray imaging (scintigraphy, SPECT, and PET) in that in both of these imaging mode families, the information conveyed by the variable attenuation of invisible electromagnetic radiation as it passes through tissues with various radiodensities is converted by an electronic sensor into an electric signal that is processed by a computer and made output as a visible-light image.

Fluoroscopy’s origins and radiography’s origins can both be traced back to 8 November 1895, when Wilhelm Röntgen, or in English script Roentgen, noticed a barium platinocyanide screen fluorescing as a result of being exposed to what he would later call X-rays (algebraic x variable signifying “unknown”). Within months of this discovery, the first crude fluoroscopes were created. These experimental fluoroscopes were simply thin cardboard screens that had been coated on the inside with a layer of fluorescent metal salt, attached to a funnel-shaped cardboard eyeshade which excluded room light with a viewing eyepiece which the user held up to his eye. The fluoroscopic image obtained in this way was quite faint. Even when finally improved and commercially introduced for diagnostic imaging, the limited light produced from the fluorescent screens of the earliest commercial scopes necessitated that a radiologist sit for a period in the darkened room where the imaging procedure was to be performed, to first accustom his eyes to increase their sensitivity to perceive the faint image. The placement of the radiologist behind the screen also resulted in significant dosing of the radiologist.

In the late 1890s, Thomas Edison began investigating materials for ability to fluoresce when X-rayed, and by the turn of the century he had invented a fluoroscope with sufficient image intensity to be commercialized. Edison had quickly discovered that calcium tungstate screens produced brighter images. Edison, however, abandoned his researches in 1903 because of the health hazards that accompanied use of these early devices. Clarence Dally, a glass blower of lab equipment and tubes at Edison’s laboratory was repeatedly exposed, suffering radiation poisoning, later succumbing to an aggressive cancer. Edison himself damaged an eye in testing these early fluoroscopes.

During this infant commercial development, many incorrectly predicted that the moving images of fluoroscopy would completely replace roentgenographs (radiographic still image films), but the then superior diagnostic quality of the roentgenograph and their already alluded safety enhancement of lower radiation dose via shorter exposure prevented this from occurring. Another factor was that plain films inherently offered recording of the image in a simple and inexpensive way, whereas recording and playback of fluoroscopy remained a more complex and expensive proposition for decades to come (discussed in detail below).

Red adaptation goggles were developed by Wilhelm Trendelenburg in 1916 to address the problem of dark adaptation of the eyes, previously studied by Antoine Beclere. The resulting red light from the goggles’ filtration correctly sensitized the physician’s eyes prior to the procedure, while still allowing him to receive enough light to function normally.

More trivial uses of the technology also appeared in the 1930s–1950s, including a shoe-fitting fluoroscope used at shoe stores. They are no longer used because the radiation exposure risk outweighs the trivial benefit. Only important applications such as health care, bodily safety, food safety, nondestructive testing, and scientific research meet the risk-benefit threshold for use.

Analog electronics revolutionized fluoroscopy. The development of the X-ray image intensifier by Westinghouse in the late 1940s in combination with closed circuit TV cameras of the 1950s allowed for brighter pictures and better radiation protection. The red adaptation goggles became obsolete as image intensifiers allowed the light produced by the fluorescent screen to be amplified and made visible in a lighted room. The addition of the camera enabled viewing of the image on a monitor, allowing a radiologist to view the images in a separate room away from the risk of radiation exposure. The commercialization of video tape recorders beginning in 1956 allowed the TV images to be recorded and played back at will.

Digital electronics were applied to fluoroscopy beginning in the early 1960s, when Frederick G. Weighart and James F. McNulty (1929-2014) at Automation Industries, Inc., then, in El Segundo, California produced on a fluoroscope the world’s first image to be digitally generated in real-time, while developing a later commercialized portable apparatus for the onboard nondestructive testing of naval aircraft. Square wave signals were detected on a fluorescent screen to create the image.

From the late 1980s onward, digital imaging technology was reintroduced to fluoroscopy after development of improved detector systems. Modern improvements in screen phosphors, digital image processing, image analysis, and flat panel detectors have allowed for increased image quality while minimizing the radiation dose to the patient. Modern fluoroscopes use caesium iodide (CsI) screens and produce noise-limited images, ensuring that the minimal radiation dose results while still obtaining images of acceptable quality.

Many names exist in the medical literature for moving pictures taken with X-rays. They include fluoroscopy, fluorography, cinefluorography, photofluorography, fluororadiography, kymography (electrokymography, roentgenkymography), cineradiography (cine), videofluorography, and videofluoroscopy. Today the word fluoroscopy is widely understood to be a hypernym of all the aforementioned terms, which explains why it is the most commonly used and why the others are declining in usage. The newest term is four-dimensional CT (4D CT). As CT-generated video imagery, 4D CT is the newest form of moving pictures taken with X-rays. The profusion of names is an idiomatic artifact of technological change, as follows:

As soon as X-rays (and their application of seeing inside the body) were discovered in the 1890s, both looking and recording were pursued. Both live moving images and recorded still images were available from the very beginning with simple equipment; thus, both “looking with a fluorescent screen” (fluoro- + -scopy) and “recording/engraving with radiation” (radio- + -graphy) were immediately named with New Latin words—both words are attested since 1896.

But the quest for recorded moving images was a more complex challenge. In the 1890s, moving pictures of any kind (whether taken with visible light or with invisible radiation) were emerging technologies. Because the word photography (literally “recording/engraving with light”) was long since established as connoting a still-image medium, the word cinematography (literally “recording/engraving movement”) was coined for the new medium of visible-light moving pictures. Soon several new words were coined for achieving moving radiographic pictures. This was often done either by filming a simple fluoroscopic screen with a movie camera (variously called fluorography, cinefluorography, photofluorography, or fluororadiography) or by taking serial radiographs rapidly to serve as the frames in a movie (cineradiography). Either way, the resulting film reel could be displayed by a movie projector. Another group of techniques were various kinds of kymography, whose common theme was capturing recordings in a series of moments, with a concept similar to movie film although not necessarily with movie-type playback; rather, the sequential images would be compared frame by frame (a distinction comparable to tile mode versus cine mode in today’s CT terminology). Thus electrokymography and roentgenkymography were among the early ways to record images from a simple fluoroscopic screen.

Television also was under early development during these decades (1890s–1920s), but even after commercial TV began widespread adoption after World War II, it remained a live-only medium for a time. In the mid-1950s, a commercialized ability to capture the moving pictures of television onto magnetic tape (with a video tape recorder) was developed. This soon led to the addition of the video- prefix to the words fluorography and fluoroscopy, with the words videofluorography and videofluoroscopy attested since 1960. In the 1970s, video tape moved from TV studios and medical imaging into the consumer market with home video via VHS and Betamax, and those formats were also incorporated into medical video equipment.

Thus, over time the cameras and recording media for fluoroscopic imaging have progressed as follows. The original kind of fluoroscopy, and the common kind for its first half century of existence, simply used none, because for most diagnosis and treatment, they weren’t essential. For those investigations that needed to be transmitted or recorded (such as for training or research), movie cameras using film (such as 16 mm film) were the medium. In the 1950s, analog electronic video cameras (at first only producing live output but later using video tape recorders) appeared. Since the 1990s, there have been digital video cameras, flat panel detectors, and storage of data to local servers or (more recently) secure cloud servers. Late-model fluoroscopes all use digital image processing and image analysis software, which not only helps to produce optimal image clarity and contrast but also allows that result with a minimal radiation dose (because signal processing can take tiny inputs from low radiation doses and amplify them while to some extent also differentiating signal from noise).

Whereas the word cine (/ˈsɪni/) in general usage refers to cinema (that is, a movie) or to certain film formats (cine film) for recording such a movie, in medical usage it refers to cineradiography or, in recent decades, to any digital imaging mode that produces cine-like moving images (for example, newer CT and MRI systems can output to either cine mode or tile mode). Cineradiography records 30-frame-per-second fluoroscopic images of internal organs such as the heart taken during injection of contrast dye to better visualize regions of stenosis, or to record motility in the body’s gastrointestinal tract. The predigital technology is being replaced with digital imaging systems. Some of these decrease the frame rate but also decrease the absorbed dose of radiation to the patient. As they improve, frame rates will likely increase.

Today, owing to technological convergence, the word fluoroscopy is widely understood to be a hypernym of all the earlier names for moving pictures taken with X-rays, both live and recorded. Also owing to technological convergence, radiography, CT, and fluoroscopy are now all digital imaging modes using X-rays with image analysis software and easy data storage and retrieval. Just as movies, TV, and web videos are to a substantive extent no longer separate technologies but only variations on common underlying digital themes, so too are the X-ray imaging modes. And indeed, the term X-ray imaging is the ultimate hypernym that unites all of them no leak water bottle, even subsuming both fluoroscopy and 4D CT. However, it may be many decades before the earlier hyponyms fall into disuse, not least because the day when 4D CT displaces all earlier forms of moving X-ray imaging may yet be distant.

Because fluoroscopy involves the use of X-rays, a form of ionizing radiation, fluoroscopic procedures pose a potential for increasing the patient’s risk of radiation-induced cancer. Radiation doses to the patient depend greatly on the size of the patient as well as length of the procedure, with typical skin dose rates quoted as 20–50 mGy/min[citation needed]. Exposure times vary depending on the procedure being performed, but procedure times up to 75 minutes have been documented[citation needed]. Because of the long length of procedures, in addition to the cancer risk and other stochastic radiation effects, deterministic radiation effects have also been observed ranging from mild erythema, equivalent of a sun burn, to more serious burns.

A study of radiation induced skin injuries was performed in 1994 by the Food and Drug Administration (FDA) followed by an advisory to minimize further fluoroscopy-induced injuries. The problem of radiation injuries due to fluoroscopy has been further addressed in review articles in 2000 and 2010.

While deterministic radiation effects are a possibility, radiation burns are not typical of standard fluoroscopic procedures. Most procedures sufficiently long in duration to produce radiation burns are part of necessary life-saving operations[citation needed].

X-ray image intensifiers generally have radiation-reducing systems such as pulsed rather than constant radiation, and last image hold, which “freezes” the screen and makes it available for examination without exposing the patient to unnecessary radiation.

Image intensifiers have been introduced that increase the brightness of the screen, so that the patient needs to be exposed to a lower dose of X-rays. Whilst this reduces the risk of ionisation to occur, it does not remove it entirely.

The invention of X-ray image intensifiers in the 1950s allowed the image on the screen to be visible under normal lighting conditions, as well as providing the option of recording the images with a conventional camera. Subsequent improvements included the coupling of, at first, video cameras and, later, digital cameras using image sensors such as charge-coupled devices or active pixel sensors to permit recording of moving images and electronic storage of still images.

Modern image intensifiers no longer use a separate fluorescent screen. Instead lemon press york, a caesium iodide phosphor is deposited directly on the photocathode of the intensifier tube. On a typical general purpose system, the output image is approximately 105 times brighter than the input image. This brightness gain comprises a flux gain (amplification of photon number) and minification gain (concentration of photons from a large input screen onto a small output screen) each of approximately 100. This level of gain is sufficient that quantum noise, due to the limited number of X-ray photons, is a significant factor limiting image quality.

Image intensifiers are available with input diameters of up to 45 cm, and a resolution of approximately 2-3 line pairs mm−1.

The introduction of flat-panel detectors allows for the replacement of the image intensifier in fluoroscope design. Flat panel detectors offer increased sensitivity to X-rays, and therefore have the potential to reduce patient radiation dose. Temporal resolution is also improved over image intensifiers, reducing motion blurring. Contrast ratio is also improved over image intensifiers: flat-panel detectors are linear over a very wide latitude, whereas image intensifiers have a maximum contrast ratio of about 35:1. Spatial resolution is approximately equal, although an image intensifier operating in ‘magnification’ mode may be slightly better than a flat panel.

Flat panel detectors are considerably more expensive to purchase and repair than image intensifiers, so their uptake is primarily in specialties that require high-speed imaging, e.g., vascular imaging and cardiac catheterization.

A number of substances have been used as radiocontrast agents, including silver, bismuth, caesium, thorium, tin, zirconium, tantalum, tungsten and lanthanide compounds. The use of thoria (thorium dioxide) as an agent was rapidly stopped as thorium causes liver cancer.

Most modern injected radiographic positive contrast media are iodine-based. Iodinated contrast comes in two forms: ionic and non-ionic compounds. Non-ionic contrast is significantly more expensive than ionic (approximately three to five times the cost), however, non-ionic contrast tends to be safer for the patient, causing fewer allergic reactions and uncomfortable side effects such as hot sensations or flushing. Most imaging centers now use non-ionic contrast exclusively, finding that the benefits to patients outweigh the expense.

Negative radiographic contrast agents are air and carbon dioxide (CO2). The latter is easily absorbed by the body and causes less spasm. It can also be injected into the blood, where air absolutely cannot.

In addition to spatial blurring factors that plague all X-ray imaging devices, caused by such things as Lubberts effect, K-fluorescence reabsorption and electron range, fluoroscopic systems also experience temporal blurring due to system lag. This temporal blurring has the effect of averaging frames together. While this helps reduce noise in images with stationary objects, it creates motion blurring for moving objects. Temporal blurring also complicates measurements of system performance for fluoroscopic systems.

Another common procedure is the modified barium swallow study during which barium-impregnated liquids and solids are ingested by the patient. A radiologist records and, with a speech pathologist, interprets the resulting images to diagnose oral and pharyngeal swallowing dysfunction. Modified barium swallow studies are also used in studying normal swallow function.

Fluoroscopy can be used to examine the digestive system using a substance which is opaque to X-rays (usually barium sulfate or gastrografin), which is introduced into the digestive system either by swallowing or as an enema. This is normally as part of a double contrast technique, using positive and negative contrast. Barium sulfate coats the walls of the digestive tract (positive contrast), which allows the shape of the digestive tract to be outlined as white or clear on an X-ray. Air may then be introduced (negative contrast), which looks black on the film. The barium meal is an example of a contrast agent swallowed to examine the upper digestive tract. Note that while soluble barium compounds are very toxic, the insoluble barium sulfate is non-toxic because its low solubility prevents the body from absorbing it.

Ethnikos Dimokratikos Ellinikos Syndesmos

Lo Ethnikos Dimokratikos Ellinikos Syndesmos, in sigla EDES (in greco: Ε.Δ best shaver reviews.Ε.Σ. – Εθνικός Δημοκρατικός Ελληνικός Σύνδεσμος) che significa Esercito Nazionale Democratico Ellenico, fu una organizzazione politica il cui braccio militare Gruppi Nazionali di Combattenti Greci (Εθνικές Ομάδες Ελλήνων Ανταρτών, ΕΟΕΑ) combatté le forze dell’Asse durante il periodo della resistenza greca. Durante l’occupazione della Grecia dalle forze dell’Asse fu, assieme all’ Ellinikós Laïkós Apeleftherotikós Stratós (ELAS), uno dei gruppi di resistenza più importanti del paese

Il movimento fu attivo dal 9 settembre 1941; il suo fondatore, Napoleon Zervas, era un ex colonnello dell’esercito tra i protagonisti di un fallito colpo di stato a favore di Eleutherios Venizelos nel 1935. L’orientamento politico dell’organizzazione fu repubblicano e democratico e il suo programma inizialmente non differiva tantissimo da quello del gruppo rivale ELAS. Entrambi combattevano le forze d’occupazione straniere, erano contrari alla monarchia di Giorgio II che appoggiò il dittatore Ioannis Metaxas e dopo la liberazione avrebbero attuato libere elezioni e la riforma agraria.

Il gruppo fu attivo sul territorio nazionale greco in azioni di guerriglia e sabotaggi, con l’aiuto dei servizi segreti Alleati

lint remover

Electric Cord Operated Fabric Shaver – Clothes Lint Puller / Fuzz & Fluff Remover Sweaters

BUY NOW

$59.00
$12.99

. Una delle azioni più eclatanti deer meat tenderizer, e l’unica in collaborazione con il gruppo rivale ELAS, fu l’operazione Harling, nota come battaglia di Gorgopotamos. Verso la fine dell’occupazione nazista l’EDES riuscì a formare, nella zona dell’Epiro, un’amministrazione locale indipendente. Mentre erano ancora in corso le ostilità con l’Asse, l’orientamento di EDES diventò più conservatore e filo monarchico diventando elemento importante per gli interessi delle forze conservatori e filo inglesi in Grecia. Nello stesso periodo, il movimento, fu anche protagonista di scontri con gli altri movimenti resistenziali greci, l’ELAS e l’Ethniki kai Koinoniki Apeleftherosis (EKKA), scontri che terminarono grazie alla mediazione dei britannici, ma che divamparono ancora più forti nel dopoguerra, portando alla guerra civile greca.